Bachstetter, A. D., Van Eldik, L. J., Schmitt, F. A., Neltner, J. H., Ighodaro, E. T., Webster, S. J., Patel, E., Abner, E. L., Kryscio, R. J., Nelson, P. T. Disease-related microglia heterogeneity in the hippocampus of Alzheimer’s disease, dementia with Lewy bodies, and hippocampal sclerosis of aging. Acta Neuropathol. Commun., 3: 32, 2015; doi: 10.1186/s40478-015-0209-z
Barkholt, P., Sanchez-Guajardo, V., Kirik, D., Romero-Ramos, M. Long-term polarization of microglia upon α-synuclein overexpression in nonhuman primates. Neuroscience, 208: 85–96, 2012; doi: 10.1016/j.neuroscience.2012.02.004
Castro, R. W., Lopes, M. C., De Biase, L. M., Valdez, G. Aging spinal cord microglia become phenotypically heterogeneous and preferentially target motor neurons and their synapses. Glia, 72: 206–221, 2024; doi: 10.1002/glia.24470
Choi, S., Hill, D., Guo, L., Nicholas, R., Papadopoulos, D., Cordeiro, M. F. Automated characterisation of microglia in ageing mice using image processing and supervised machine learning algorithms. Sci. Rep., 12: 2022; doi: 10.1038/s41598-022-05815-6
Davies, D. S., Ma, J., Jegathees, T., Goldsbury, C. Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimer’s disease. Brain Pathology, 27: 795–808, 2017; doi: 10.1111/bpa.12456
Davis, B. M., Salinas-Navarro, M., Cordeiro, M. F., Moons, L., Groef, L. De. Characterizing microglia activation: A spatial statistics approach to maximize information extraction. Sci. Rep., 7: 2017; doi: 10.1038/s41598-017-01747-8
Deczkowska, A., Keren-Shaul, H., Weiner, A., Colonna, M., Schwartz, M., Amit, I. Disease-Associated Microglia: a universal immune sensor of neurodegeneration. Cell, 173: 1073–1081, 2018; doi: 10.1016/j.cell.2018.05.003
Fernández-Arjona, M. del M., Grondona, J. M., Fernández-Llebrez, P., López-Ávalos, M. D. Microglial morphometric parameters correlate with the expression level of IL-1β, and allow identifying different activated morphotypes. Front. Cell. Neurosci., 13: 2019; doi: 10.3389/fncel.2019.00472
Fernández-Arjona, M. del M., Grondona, J. M., Granados-Durán, P., Fernández-Llebrez, P., López-Ávalos, M. D. Microglia morphological categorization in a rat model of neuroinflammation by hierarchical cluster and principal components analysis. Front. Cell. Neurosci., 11: 2017; doi: 10.3389/fncel.2017.00235
Fletcher, E. J. R., Finlay, C. J., Amor Lopez, A., Crum, W. R., Vernon, A. C., Duty, S. Neuroanatomical and microglial alterations in the striatum of levodopa-treated, dyskinetic hemi-Parkinsonian rats. Front. Neurosci., 14: 2020; doi: 10.3389/fnins.2020.567222
Franciosi, S., Ryu, J. K., Shim, Y., Hill, A., Connolly, C., Hayden, M. R., McLarnon, J. G., Leavitt, B. R. Age-dependent neurovascular abnormalities and altered microglial morphology in the YAC128 mouse model of Huntington disease. Neurobiol. Dis., 45: 438–449, 2012; doi: 10.1016/j.nbd.2011.09.003
Franco-Bocanegra, D. K., Gourari, Y., McAuley, C., Chatelet, D. S., Johnston, D. A., Nicoll, J. A. R., Boche, D. Microglial morphology in Alzheimer’s disease and after Aβ immunotherapy. Sci. Rep., 11: 2021; doi: 10.1038/s41598-021-95535-0
Gao, C., Jiang, J., Tan, Y., Chen, S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct. Target Ther., 8: 2023; doi: 10.1038/s41392-023-01588-0
Heindl, S., Gesierich, B., Benakis, C., Llovera, G., Duering, M., Liesz, A. Automated morphological analysis of microglia after stroke. Front. Cell. Neurosci., 12: 2018; doi: 10.3389/fncel.2018.00106
Hickman, S., Izzy, S., Sen, P., Morsett, L., El Khoury, J. Microglia in neurodegeneration. Nat. Neurosci., 21: 2018; doi: 10.1038/s41593-018-0242-x
Kozlowski, C., Weimer, R. M. An automated method to quantify microglia morphology and application to monitor activation state longitudinally in vivo. PLoS One 7: 2012; doi: 10.1371/journal.pone.0031814
Leyh, J., Paeschke, S., Mages, B., Michalski, D., Nowicki, M., Bechmann, I., Winter, K. Classification of microglial morphological phenotypes using machine learning. Front. Cell. Neurosci., 15: 2021; doi: 10.3389/fncel.2021.701673
Madry, C., Kyrargyri, V., Arancibia-Cárcamo, I. L., Jolivet, R., Kohsaka, S., Bryan, R. M., Attwell, D. Microglial tamification, surveillance, and Interleukin-1β release are regulated by the two-pore domain K+ channel THIK-1. Neuron, 97: 299-312.e6, 2018; doi: 10.1016/j.neuron.2017.12.002
Martini, A. C., Helman, A. M., McCarty, K. L., Lott, I. T., Doran, E., Schmitt, F. A., Head, E. Distribution of microglial phenotypes as a function of age and Alzheimer’s disease neuropathology in the brains of people with Down syndrome. Alzheimer’s and Dementia: Diagnosis, Assessment and Disease Monitoring, 12: 2020; doi: 10.1002/dad2.12113
Ohgomori, T., Yamada, J., Takeuchi, H., Kadomatsu, K., Jinno, S. Comparative morphometric analysis of microglia in the spinal cord of SOD1G93A transgenic mouse model of amyotrophic lateral sclerosis. European J. Neurosci., 43: 1340–1351, 2016; doi: 10.1111/ejn.13227
Olah, M., Amor, S., Brouwer, N., Vinet, J., Eggen, B., Biber, K., Boddeke, H. W. G. M. Identification of a microglia phenotype supportive of remyelination. Glia, 60: 306–321, 2012; doi: 10.1002/glia.21266
Paasila, P. J., Davies, D. S., Kril, J. J., Goldsbury, C., Sutherland, G. T. The relationship between the morphological subtypes of microglia and Alzheimer’s disease neuropathology. Brain Pathol., 29: 726–740, 2019; doi: 10.1111/bpa.12717
Paolicelli, R. C., Sierra, A., Stevens, B., Tremblay, M. E., Aguzzi, A., Ajami, B., Amit, I., Audinat, E., Bechmann, I., Bennett, M., Bennett, F., Bessis, A., Biber, K., Bilbo, S., Blurton-Jones, M., Boddeke, E., Brites, D., Brône, B., … Wyss-Coray, T. Microglia states and nomenclature: a field at its crossroads. Neuron, 110: 3458–3483, 2022; doi: 10.1016/j.neuron.2022.10.020
Reddaway, J., Richardson, P. E., Bevan, R. J., Stoneman, J., Palombo, M. Microglial morphometric analysis: so many options, so little consistency. Front. Neuroinform., 17: 2023; doi: 10.3389/fninf.2023.1211188
Refolo, V., Bez, F., Polissidis, A., Kuzdas-Wood, D., Sturm, E., Kamaratou, M., Poewe, W., Stefanis, L., Angela Cenci, M., Romero-Ramos, M., Wenning, G. K., Stefanova, N. Progressive striatonigral degeneration in a transgenic mouse model of multiple system atrophy: translational implications for interventional therapies. Acta Neuropathol. Commun., 6: 2, 2018; doi: 10.1186/s40478-017-0504-y
Salamanca, L., Mechawar, N., Murai, K. K., Balling, R., Bouvier, D. S., Skupin, A. MIC-MAC: An automated pipeline for high-throughput characterization and classification of three-dimensional microglia morphologies in mouse and human postmortem brain samples. Glia, 67: 1496–1509, 2019; doi: 10.1002/glia.23623
Salter, M. W., Stevens, B. Microglia emerge as central players in brain disease. Nat., Med., 23: 1018–1027, 2017; doi: 10.1038/nm.4397
Sanchez-Guajardo, V., Febbraro, F., Kirik, D., Romero-Ramos, M. Microglia acquire distinct activation profiles depending on the degree of α-synuclein neuropathology in a rAAV based model of Parkinson’s disease. PLoS One, 5: 2010; doi: 10.1371/journal.pone.0008784
Sapp, E., Kegel, K. B., Hashikawa, T., Uchiyama, Y., Tohyama, K., Bhide, P. G., Vonsattel, J. P., Difiglia, M. Early and progressive accumulation of reactive microglia in the Huntington disease brain. J. Neuropathol. Exp. Neurol., 60: 2001; doi: 10.1093/jnen/60.2.161
Savage, J. C., Carrier, M., Tremblay, M. È. Morphology of microglia across contexts of health and disease. in Methods in Molecular Biology vol. 2034 13–26, Humana Press Inc., 2019.; doi: 10.1007/978-1-4939-9658-2_2
Savage, J. C., St-Pierre, M. K., Carrier, M., El Hajj, H., Novak, S. W., Sanchez, M. G., Cicchetti, F., Tremblay, M. È. Microglial physiological properties and interactions with synapses are altered at presymptomatic stages in a mouse model of Huntington’s disease pathology. J. Neuroinflammation, 17: 2020; doi: 10.1186/s12974-020-01782-9
Shaerzadeh, F., Phan, L., Miller, D., Dacquel, M., Hachmeister, W., Hansen, C., Bechtle, A., Tu, D., Martcheva, M., Foster, T. C., Kumar, A., Streit, W. J., Khoshbouei, H. Microglia senescence occurs in both substantia nigra and ventral tegmental area. Glia, 68: 2228–2245, 2020; doi: 10.1002/glia.23834
Shahidehpour, R. K., Higdon, R. E., Crawford, N. G., Neltner, J. H., Ighodaro, E. T., Patel, E., Price, D., Nelson, P. T., Bachstetter, A. D. Dystrophic microglia are associated with neurodegenerative disease and not healthy aging in the human brain. Neurobiol. Aging., 99: 19–27, 2021; doi: 10.1016/j.neurobiolaging.2020.12.003
Silburt, J., Aubert, I. MORPHIOUS: an unsupervised machine learning workflow to detect the activation of microglia and astrocytes. J. Neuroinflammation, 19: 2022; doi: 10.1186/s12974-021-02376-9
Spiller, K. J., Restrepo, C. R., Khan, T., Dominique, M. A., Fang, T. C., Canter, R. G., Roberts, C. J., Miller, K. R., Ransohoff, R. M., Trojanowski, J. Q., Lee, V. M. Y. Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nat. Neurosci., 21: 329–340, 2018; doi: 10.1038/s41593-018-0083-7
Verdonk, F., Roux, P., Flamant, P., Fiette, L., Bozza, F. A., Simard, S., Lemaire, M., Plaud, B., Shorte, S. L., Sharshar, T., Chrétien, F., Danckaert, A. Phenotypic clustering: A novel method for microglial morphology analysis. J. Neuroinflammation, 13: 2016; doi: 10.1186/s12974-016-0614-7
Zhou, Q., Mareljic, N., Michaelsen, M., Parhizkar, S., Heindl, S., Nuscher, B., Farny, D., Czuppa, M., Schludi, C., Graf, A., Krebs, S., Blum, H., Feederle, R., Roth, S., Haass, C., Arzberger, T., Liesz, A., Edbauer, D. Active poly‐GA vaccination prevents microglia activation and motor deficits in a C9orf72 mouse model. EMBO Mol. Med., 12: 2020; doi: 10.15252/emmm.201910919