Multiplex Immunofluorescence of Brain Sections from the “Low Dox” TDP-43ΔNLS Mouse Model of ALS
TDP-43小鼠模型,肌萎缩侧索硬化症(ALS)
我们的TDP-43(TDP43;TARDBP)转基因小鼠具有细胞质聚集、运动功能障碍、神经变性、神经炎症和神经肌肉神经元变性。
TDP-43 模型概述
细胞质TDP-43(或TDP43)聚集是家族性和散发性ALS的特征。虽然存在几种TDP-43聚集的肌萎缩侧索硬化症(ALS;也称为运动神经元疾病[MND])转基因(tg)小鼠模型,但它们各有优缺点。在我们的资源——ALS小鼠模型药物研发中,了解ALS动物模型的更多信息。
在Biospective,我们使用TDP-43蛋白病(“TDP-43模型”)的rNLS8(或ΔNLS;delta NLS;dNLS)ALS小鼠模型的原始版本和修改版本:
- 原始小鼠模型(“Off Dox”):进展迅速(数周
- Biospective小鼠模型(“低剂量阿霉素”):进展较慢(数月)
这些TDP-43模型对ALS研究人员的重要优势包括:
- TDP-43在细胞质中的定位错误
- 运动障碍逐渐加重
- 肌肉无力、神经退化和萎缩
- 运动神经元变性及大脑局部萎缩
- 神经炎症
- 大脑、脊髓和神经肌肉接头(NMJ)病变
模型的时间进程是可预测的,疾病进展的测量结果具有高度可重复性,使其成为临床前研究中评估治疗药物的绝佳模型。请访问我们的资源库,了解更多信息——用于药物研发的TDP-43 ΔNLS (rNLS8)小鼠。
TDP-43小鼠
rNLS8(NEFH-hTDP-43-ΔNLS)双转基因ALS小鼠(“TDP43小鼠模型”)是通过将携带NEFH-tTA转基因的小鼠与携带tetO-hTDP-43-ΔNLS转基因的小鼠进行杂交而产生的。该TARDBP模型最初由Walker等人开发并报告(Acta.神经病理学 ,130:643-670,2015)。它是一种肌萎缩侧索硬化症(ALS)或运动神经元疾病(MND)模型。它也可以作为额颞痴呆(FTD)或额颞叶变性(FTLD)的TDP-43病理模型。
这些TDP-43转基因小鼠在繁殖和初始衰老期(通常为5至12周龄)以Dox饮食为主。然后,小鼠从Dox饮食转为标准饮食(“Off Dox”模型)或由Biospective开发的替代方案(“Low Dox”模型),以实现人类TDP-43的表达。该模型的一个有趣之处在于,通过让小鼠重新进食Dox,可以恢复病理和功能。

我们经过验证的TDP-43转基因小鼠测量
- 体重
- 运动评分(后肢夹紧、震颤、格栅敏捷度、瘫痪
- 握力测试
- 体内肌肉电生理学,包括复合肌肉动作电位(CMAP)(参见ALS小鼠模型和脊髓运动神经元
- 通过纵向 活体计算机断层扫描(CT)测量肌肉萎缩(参见ALS药物研发中的TDP-43 ΔNLS (rNLS8)小鼠模型
- 血浆和脑脊液中的神经丝轻链测量
- 通过核磁共振成像(MRI)测量大脑萎缩程度,以评估神经变性(参见神经变性小鼠模型中的大脑萎缩分析)
- 免疫组织化学和多重免疫荧光
显微镜图像
通过下面的交互式图像浏览器,您可以浏览我们的 TDP-43 转基因小鼠模型的整个多重免疫荧光组织切片。
您可以使用鼠标左键在图像上移动。您可以使用 鼠标/触控板(上/下)或左上角的+和-按钮放大和缩小 。您可以在右上角的控制面板中 切换(开/关)、更改颜色并调整通道的图像设置。
我们建议使用 全屏模式,以获得 最佳交互体验。
1/10
This Interactive Microscopy Image Story illustrates some of the interesting pathologic features of Biospective's "Low Dox" TDP-43ΔNLS mouse model.
This ALS model was specifically intended to have a slower disease progression compared to the original rNLS8 model, and to allow greater potential to detect disease-modifying therapeutic effects. We have found intriguing temporal dynamics of different pathologic aspects (e.g. neurodegeneration, astrogliosis, microgliosis) in this model.
Here, we explore the human TDP-43 expression in neurons and the neuroinflammatory response in a coronal brain section from this model.
This multiplex immunofluorescence (mIF) image was generated by immunostaining for hTDP-43, GFAP, Iba-1, and counterstained with the DAPI nuclear stain. Tissue sections were digitized using a high-throughput slide scanner and were processed using Biospective's PERMITSTM software platform.
To navigate though this Image Story, you can use the arrows and/or the Table of Contents icon in the upper right corner of this panel.
You can also interact with the microscopy image in the viewer on the right at any time to further explore this high-resolution data.
Human TDP-43 Expression (Coronal View)
In this model, the human TDP-43ΔNLS transgene is under the control of the neurofilament heavy chain (NEFH) promoter (Walker, 2015). As such, expression is observed in neurons throughout the central nervous system (CNS).
As can be seen in this microscopy image, there is heterogeneity in the expression of human TDP-43 levels in neurons in different brain regions (e.g. cerebral cortex vs. caudate-putamen). For reference, an illustration with atlas labels for this brain level is provided below.
Mouse Brain Section (Bregma +0.75) with Neuroanatomy and Cortical Layer Labels
Human TDP-43 Expression (Sagittal View)
This image shows a sagittal view of a Low Dox mouse brain immunostained for human TDP-43. Note the spatial pattern of cytoplasmic TDP-43 expression, with strong intensity in various brain regions, including the cerebral cortex, hippocampus, thalamus, hypothalamus, olfactory bulb, cerebellum, and brainstem.
Mouse Brain Section (Lateral 1.4mm) with Neuroanatomy Labels
Cytoplasmic Mislocalization of hTDP-43
This mouse model was specifically designed to develop TDP-43 aggregates in the cytoplasm. The human TDP-43 has a defective nuclear localization signal (NLS) (Igaz, 2011). Walker and colleagues have also shown reduced expression levels of endogenous mouse TDP-43 in the nucleus as a result of cytoplasmic TDP-43 accumulation (Walker, 2015).
In this image from the motor cortex, note the high level of staining in the cytoplasm relative to the nucleus. The video below shows the hTDP-43 and DAPI toggled on/off to clearly see the spatial localization of hTDP-43.
Regional Cortical & Subcortical Astrogliosis
A prominent reactive astrogliosis is found in close proximity to degenerating motor neurons in ALS patients and animal models of ALS. While reactive astrogliosis in ALS is likely both primary and secondary to motor neuron degeneration, astrocytes are not simple bystanders and can influence the fate of motor neurons (Vargas, 2010).
This image shows the GFAP immunofluorescence staining. Astrogliosis is apparent in portions of the motor and somatosensory cortex, as well as the caudate-putamen.
Cortical Astrocytes in Laminar Pattern
The arrows highlight this laminar pattern in Layer 4 of the somatosensory cortex, while the box shows astrocytes in the motor cortex.
Astrocytes & TDP-43ΔNLS Expressing Neurons
In this image, one can readily appreciate the spatial relationship between the GFAP-stained astrocytes and the TDP-43 stained neurons.
We have found cortical atrophy in this model using in vivo anatomical MRI scans and advanced image processing & analysis methods.
Note the regional cortical thinning (green & yellow colors) in this animation, corresponding to regions of astrogliosis in the multiplex IF image. This multi-modality data suggests a regional (and potentially laminar) vulnerability of specific neuronal populations to mislocalized TDP-43.
Activated Microglia & TDP-43ΔNLS Model
Microglia appear to have central role in the pathologic and functional features in this ALS model. Examples of activated microglia with morphological changes (e.g. hypertrophic cell bodies, shorter processes) can be seen in this microscopy image from the somatosensory cortex.
Our team has developed advanced image processing tools that allow for analysis of microglial morphology, and we have been applying this technique to IHC & IF sections from various neurodegenerative disease models.
By leveraging our large dataset of IHC/IF images from TDP-43ΔNLS mice, we have identified a strong correlation between the density of non-ramified ("activated") microglia and the composite motor score (a combination of clasping, tremor, grill agility, hindlimb paralysis, and overall well-being scores).
Regional microglia morphological changes are highly correlated with the clinical composite (motor) scores (r=0.83).
Microglia & hTDP-43 Expressing Neurons
Spiller et al. (Spiller, 2018) found a shift in morphology from resting/homeostatic (ramified) to activated microglia during the disease “recovery” after expression of pathological TDP-43 was halted. These reactive microglia selectively cleared the neuronal hTDP-43 and there was a concomitant functional recovery. We have also observed this recovery of motor function in this model.
When Spiller and colleagues (Spiller, 2018) blocked microgliosis with the CSF1R/c-kit inhibitor, PLX3397, during the early recovery phase, the mice failed to regain full motor function, revealing a neuroprotective role of microglia in this model.
This ability to facilitate clearance of cytoplasmic TDP-43 may be mediated via microglial-neuronal interactions (Cserép, 2021). Neuroinflammatory interactions between microglia and neurons occur at both synapses and the soma, with synaptic interactions regulating pruning, plasticity, and network synchronization. When dysfunctional, these interactions can lead to pathological synapse elimination and neurodegeneration (Clark, 2012; Pascual, 2012; Hong, 2016). Soma interactions, recently identified as critical for monitoring neuronal health, can provide neuroprotection or, when dysregulated, contribute to chronic inflammation and neuronal death (Salter, 2017; Cserép, 2021).
The arrow on the microscopy image from the motor cortex indicates potential contact points between the neuron soma and microglial processes. Our team is actively analyzing these glial-neuronal interactions and their roles in disease pathogenesis.
References
Clark, A.K., Malcangio, M. Microglial signalling mechanisms: cathepsins and fractalkine. Exp. Neurol., 234: 283–292, 2012; doi: 10.1016/J.EXPNEUROL.2011.09.012
Cserép, C., Pósfai, B., Dénes, A. Shaping neuronal fate: functional heterogeneity of direct microglia-neuron interactions. Neuron, 109: 222-240, 2021; doi: 10.1016/j.neuron.2020.11.007
Hong, S., Beja-Glasser, V.F., Nfonoyim, B.M., Frouin, A., Li, S., Ramakrishnan, S., Merry, K.M., Shi, Q., Rosenthal, A., Barres, B.A., Lemere, C.A., Selkoe, D.J., Stevens, B. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 352: 712–716, 2016; doi: 10.1126/SCIENCE.AAD8373
Igaz, L.M., Kwong, L.K., Lee, E.B., Chen-Plotkin, A., Swanson, E., Unger, T., Malunda, J., Xu, Y., Winton, M.J., Trojanowski, J.Q., Lee, V.M.-Y.. Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J. Clin. Invest., 121: 726–738, 2011; doi: 10.1172/jci44867
Pascual, O., Achour, S. Ben, Rostaing, P., Triller, A., Bessis, A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc. Natl. Acad. Sci. USA, 109: 2012; doi: 10.1073/PNAS.1111098109
Salter, M.W., Stevens, B. Microglia emerge as central players in brain disease. Nat. Med., 23: 1018–1027, 2017; doi: 10.1038/NM.4397
Spiller, K. J., Restrepo, C. R., Khan, T., Dominique, M. A., Fang, T. C., Canter, R. G., Roberts, C. J., Miller, K. R., Ransohoff, R. M., Trojanowski, J. Q., Lee, V. M. Y. Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nat. Neurosci., 21: 329–340, 2018; doi: 10.1038/s41593-018-0083-7
Vargas, M.R., Johnson, J.A. Astrogliosis in amyotrophic lateral sclerosis: role and therapeutic potential of astrocytes. Neurotherapeutics, 7: 471-81, 2010; doi: 10.1016/j.nurt.2010.05.012
Walker, A.K., Spiller, K.J., Ge, G., Zheng, A., Xu, Y., Zhou, M., Tripathy, K., Kwong, L.K., Trojanowski, J.Q., Lee, V.M.-Y. Functional recovery in new mouse models of ALS/FTLD after clearance of pathological cytoplasmic TDP-43. Acta Neuropathol., 130: 643-660, 2015; doi: 10.1007/s00401-015-1460-x
了解更多关于我们对该模型的定性、经过验证的测量以及临床前神经科学合同研究组织服务的信息。
TDP43转基因模型是否显示出疾病改良效果?
是的。下面是一个很好的例子,说明小分子如何改变TDP43小鼠模型的疾病:
Young, P.R., DeDuck, K., Bedell, B.J. AIT-101 improves functional deficits in a human TDP-43 animal model of ALS.22ndAnnual Meeting of the Northeast ALS Consortium, 2023; doi:10.1002/mus.27969.
什么是“核定位信号”?
核定位信号(NLS)通常是一种短肽,可促进蛋白质从细胞质转运到细胞核。 有关综述,请访问:doi:10.1186/s12964-021-00741-y。
与常规模型相比,Biospective的“低剂量”小鼠模型有什么优势?
标准rNLS8(或delta NLS;ΔNLS;dNLS)小鼠模型是ALS(又称运动神经元疾病;MND)的一种进展迅速的模型。虽然该模型非常有用,但我们发现大多数赞助商希望使用一种病情较轻、进展较慢的模型,以便增加观察药物效果的机会。低剂量多柔比星TDP-43小鼠表现出与标准模型相似的表型,包括神经变性,但进展时间更长。
磷酸化TDP43聚集体是否出现在TDP43小鼠体内?
是的。我们已经开发出卓越的免疫组织化学(IHC)和免疫荧光(IF)方案,能够很好地显示神经元细胞质中“点状”的p-TDP-43(p409/410)聚集物,而核内TDP-43则没有染色。
Biospective公司 在这项TDP43 转基因模型 中 评估了哪些治疗剂 ?
我们使用各种不同的给药途径,在这个TDP43模型中测试了多种治疗剂,包括抗体、基因治疗、小分子、反义寡核苷酸和多肽。
Biospective公司能否 在TDP43转基因 ALS模型中进行口服给药?
是的。我们经常在TDP43小鼠模型中口服给药。我们也可以通过食物或饮用水给药。
Biospective公司使用ALS“低剂量”小鼠模型的研究持续了多长时间?
典型的随访时间从3周到12周不等。我们可以与您共同确定最佳随访时间,以便根据您的特定治疗药物评估疾病进展和治疗效果。
老鼠是否容易获得用于研究?
是的。作为一家临床前神经科学合同研究组织,我们拥有完善的TDP43 ALS小鼠繁殖群,随时可供研究使用。我们很乐意与您讨论研究时间表。