临床前网站临床网站

α-Synuclein Preformed Fibril (PFF) 模型

人类帕金森病特有的α-突触核蛋白的病理性扩散,可通过注射α-突触核蛋白前体纤维(PFF)在动物大脑中模拟。这种“PFF种子与扩散模型”可在过表达人类α-突触核蛋白的转基因小鼠或野生型小鼠或大鼠中诱导。

这种高度可复制的突触核蛋白病动物模型复制了人类帕金森病的几个关键特征,包括细胞体和神经突中的α-突触核蛋白聚集、神经变性(可通过血液和脑脊液中的神经丝轻链以及基于MRI的体内脑萎缩测量值进行测量)、小胶质细胞增生、星形胶质细胞增生和多巴胺能神经变性。在该模型中,运动障碍和睡眠结构改变也可以定量测量。

用免疫组织化学(IHC)处理的一对脑组织切片,突出了与帕金森病研究相关的磷酸化α-突触核蛋白。

AAV A53T α-Synuclein小鼠模型

成年啮齿动物大脑中的α-突触核蛋白病变可通过注射腺相关病毒(AAV)载体产生。在这种帕金森病小鼠模型中,野生型(C57BL/6)小鼠接受立体定向注射,将A53T突变人α-突触核蛋白过度表达的AAV载体注入黑质致密部附近。

这种健壮的突触核蛋白模型在病理学上显示了突触核蛋白在神经元体和神经突中的聚集、神经炎症(包括活化的微胶质细胞和反应性星形胶质细胞)、神经退行性病变和多巴胺能神经元变性。在这些帕金森氏症小鼠模型中观察到明显的运动障碍,这是由于单侧多巴胺能神经元丢失引起的,包括旋转杆试验、圆柱试验、悬尾摆动试验和后肢夹紧试验中的变化。

通过酪氨酸羟化酶免疫染色显示同侧纹状体多巴胺能神经元去神经化

帕金森病模型对人类疾病的可移植性

低度核蛋白

α-突触核蛋白聚集

错误折叠的α-突触核蛋白聚集是帕金森病的主要病理特征。在黑质致密部和其他脑区的多巴胺能神经元中可观察到路易体和路易神经纤维。错误折叠的α-突触核蛋白病理也遵循时空模式(Braak,2003)。在AAV诱导和原纤维诱导(PFF)的模型中,我们观察到神经元体和突起中存在大量磷酸化α-突触核蛋白。在PFF模型中,我们还观察到了明显的种子和扩散现象。

活化的微胶质细胞和反应性星形胶质细胞

活化的微胶质细胞和反应性星形胶质细胞

神经炎症是帕金森病的主要病理特征。活化的微胶质细胞和反应性星形胶质细胞在发病机理中起着关键作用(Kam,2020Chen,2023)。我们在AAV和PFF诱导的小鼠模型中发现了神经炎症的明显时空模式。我们还使用基于计算机视觉和机器学习开发的算法,证明了这些模型中小胶质细胞和星形胶质细胞的形态变化

AAV - EBST测试结果(盒状和须状)

多巴胺能神经元丢失和运动障碍

锥体外系运动症状是帕金森病的主要临床特征。运动功能障碍是由黑质致密部(SNc)多巴胺能神经元的丢失和纹状体(例如尾状核 和壳核的神经支配缺失引起的通过用AAVs过表达α-突触核蛋白或α-突触核蛋白PFFs靶向SNc,我们证明了模型中多巴胺能神经元的神经退行性病变和多巴胺能终末的丢失。这些小鼠在各种测试中表现出运动功能改变,包括悬尾摆动测试、圆柱测试、后肢夹紧测试和旋转棒测试。

更新后的M83睡眠回合长度 每个仓位的百分比

睡眠改变

睡眠障碍是帕金森病常见的非运动症状(Stefani和Högl,2020),影响约85%的患者(Asadpoordezaki,2025)。我们使用一种非侵入性的系统对小鼠的睡眠进行评估,并反复证明了当α-突触核蛋白PFF被注入转基因小鼠的前嗅核(AON)时,睡眠-觉醒结构(例如睡眠百分比 、睡眠持续时间)会发生改变。

M83 梨状薄层核磁共振成像

区域脑萎缩

脑成像生物标记广泛用于包括帕金森病在内的神经退行性疾病的临床试验。核磁共振成像(MRI)衍生的区域体积和皮质厚度测量对帕金森病(PD)的大脑萎缩高度敏感。研究表明,帕金森病(PD)中基于MRI的大脑萎缩的进展与α-突触核蛋白的朊病毒样传播假说一致(Tremblay,2021 ;Abdelgawad,2023)。通过高分辨率全脑核磁共振成像采集和全自动图像处理与分析,我们证明了在PFF和AAV两种PD模型中,大脑区域萎缩具有可重复性,从而成为神经退行性疾病的可靠生命期测量指标。

M83 血浆 脑脊液 神经丝蛋白

脑脊液和血浆中神经丝轻链升高

帕金森氏症患者的脑脊液和血浆中神经丝轻链水平升高(Bäckström ,2020;Urso,2023 ;Pedersen,2024)。神经丝轻链测量在帕金森氏症临床试验中经常使用。在几种帕金森氏症动物模型中观察到神经丝轻链水平升高。我们观察到,在将人类α-突触核蛋白PFF注射到M83+/-转基因小鼠的前嗅核(AON)或前脑束(MFB)后,小鼠模型的血浆和脑脊液中神经丝轻链水平显著升高。

帕金森氏症小鼠模型 功能

下面的交互式演示可让您了解我们对AAV-Synuclein小鼠模型的描述,包括体内数据和整个多重免疫荧光组织切片的高分辨率图像。

您只需使用左侧面板即可浏览“图像故事”。

您可以使用鼠标左键在高清显微镜图像中平移。您可以使用 鼠标/触控板(上/下)或左上角的+和-按钮放大和缩小 。您可以在右上角的控制面板中 切换(开/关)、更改颜色以及调整通道和分割的图像设置。

我们建议使用 全屏模式,以获得 最佳交互体验。

Neurodegeneration & Neuroinflammation in the AAV-Synuclein Mouse Model

1/11

Biospective Preclinical Logo

This Interactive Presentation illustrates some of the interesting motor function, brain imaging, and pathologic features of Biospective's AAV A53T α-synuclein mouse model of Parkinson’s disease (PD).

This model was generated by injecting 12 week-old C57BL/6 mice with AAV-human-A53T-synuclein or AAV-null (control) vectors unilaterally into the left substantia nigra pars compacta (SNc). 2 µL of vector was infused at a rate of 0.4 µL/min using a digital stereotaxic device with an automated microinjector.

Coronal Image of Mouse Brain with AAV Injection Site in the SNc

Coronal Atlas View of SNc Injection Site

Multiplex immunofluorescence (mIF) images were generated by immunostaining for phospho-Syn129, GFAP, Iba-1, Tyrosine Hydroxylase, Dopaminergic Nuclei, and counterstained with the DAPI nuclear stain. Tissue sections were digitized using a high-throughput slide scanner and were processed using Biospective's PERMITSTM software platform.

To navigate though this Image Story, you can use the arrows and/or the Table of Contents icon in the upper right corner of this panel.

Navigation Panel with Tooltips

You can also interact with the microscopy image in the viewer on the right at any time to further explore this high-resolution data.

Neurodegeneration in the Substantia Nigra

As can be seen in this microscopy image, there is substantial loss of TH-positive dopaminergic neurons in the ipsilateral SNc compared to the contralateral hemisphere. For reference, an illustration with atlas labels for this brain level is provided below.

Coronal Mouse Brain Section (Bregma -3.2) with Neuroanatomy Labels

Using our PERMITSTM quantitative analysis software, we have quantified the TH staining in the SNc. The plots below show a highly significant reduction in the ipsilateral hemisphere.

Tyrosine Hydroxylase and Cell Density in the Substantia Nigra

TH stain density and cell density for AAV-Syn compared to AAV-null (control) injections; mean ± SEM, t-test, **** p<0.0001.

We have found significant brain atrophy in the SNc by generating regional volume data from in vivo anatomical MRI scans, which corresponds well with the loss of TH-positive neurons. MR images were acquired from mice injected with different doses of AAV-Synuclein at 4 weeks post-inoculation using a 7T animal MRI scanner.

Anatomical MRI with segmented SNc, as well as a plot of relative difference between ipsilateral and contralateral SNc. Injected AAV-Syn doses (GC) were 1×109 (yellow), 5×109 (blue), and 1×1010 (aqua). *p<0.05, **p<0.01.

Dopaminergic Neurons in the Contralateral SNc

This microscopy image shows the contralateral (right hemisphere) SNc which shows unaffected TH-positive cell bodies and processes in red. The DAPI-counterstained nuclei are shown in blue.

Loss of Dopaminergic Neurons in the Ipsilateral SNc

This microscopy image shows the ipsilateral (left hemisphere) SNc, which demonstrates a substantial reduction of TH-positive cell bodies and processes (in red) compared to the contralateral hemisphere. The DAPI-counterstained nuclei are shown in blue.

Neurodegeneration in the Caudate-Putamen & Dopaminergic Motor Deficits

This microscopy image show severe dopaminergic denervation of the ipsilateral (left hemisphere) caudate-putamen (loss of TH-positive terminals). For reference, an illustration with atlas labels for this approximate brain level is provided below.

Coronal Image of Mouse Brain at the Level of the Striatum

Coronal Mouse Brain Section (Bregma +0.86) with Neuroanatomy Labels

Using our PERMITSTM quantitative analysis software, we have quantified the TH staining in the Caudate-Putamen. The plot below shows a highly significant reduction in the ipsilateral hemisphere.

Tyrosine Hydroxylase Staining in the Caudate-Putamen

TH stain density for AAV-Syn compared to AAV-null (control) injections; mean ± SEM, t-test, **** p<0.0001.

This loss of dopaminergic innervation corresponds well with unilateral motor deficits in these mice, including a highly significant increase in use of the ipsilateral paw during the Cylinder Test, decreased latency to fall in the Rotarod Test, and increased swings to the contralateral side in the Tail Suspension Swing Test (TSST).

Illustration of Motor Tests and Plots of AAV-Syn vs. AAV-null

Cylinder Test, Rotarod Test, and Tail Swing Suspension Test (TSST) data for AAV-Syn compared to AAV-null (control) injections; mean ± SEM, t-test, **** p<0.0001.

Loss of Dopaminergic Terminals in the Ipsilateral Caudate-Putamen

This high magnification view shows the severe extent of loss of dopaminergic (TH-positive) terminals in the ipsilateral striatum. There are some remaining (albeit dystrophic) axons present.

Similar to our findings in the SNc, we have observed brain atrophy in the caudate-putamen by quantitative analysis of high-resolution anatomical MRI scans, which establishes an in vivo-ex vivo relationship between neuroimaging and IF measures.

MRI Atlas and Volume Data at the Level of the Striatum

Anatomical MRI with segmented caudate-putamen, as well as a plot of the relative difference between ipsilateral and contralateral caudate-putamen. Injected AAV-Syn doses (GC) were 1×109 (yellow), 5×109 (blue), and 1×1010 (aqua). *p<0.05, **p<0.01.

Microgliosis in Response to Human A53T a-Synuclein Expression

In this low magnification image, one can readily appreciate the higher density of Iba-1 staining microglia in the ipsilateral hemisphere (indicated by the box) relative to the contralateral hemisphere in an AAV-Syn injected mouse brain.

The plots below show the Iba-1 stain density in various brain regions, with highly significant increased staining in the AAV-Syn mice.

PERMITS Data on Iba-1 Stain Density

Iba-1 stain density for AAV-Syn compared to AAV-null (control) injections; mean ± SEM, t-test, **** p<0.0001.

We have performed a morphological analysis of microglia using a novel computer vision & machine learning approach developed by our team. This fully-automated algorithm classifies non-activated (ramified) and activated (non-ramified) microglia.

Examples of Non-activated and Activated Microglial Morphology

The plots below show the microglial activation in various brain regions, with highly significant increased microglial activation in the AAV-Syn mice.

Plots of PERMITS Data Showing Activated Microglia

Microglial activation for AAV-Syn compared to AAV-null (control) injections; mean ± SEM, t-test, **** p<0.0001.

Iba-1 Staining in Proximity to Phosphorylated α-Synuclein

This high magnification view shows the increased density of Iba-1-stained microglia in areas with phosphorylated α-synuclein aggregates.

Astrogliosis in Response to Human A53T α-Synuclein Expression

This low magnification microscopy image show a higher density of GFAP-positive astrocytes in the ipsilateral hemisphere (indicated by the box) of an AAV-Syn injected mouse brain. The plots below show the GFAP stain density in various brain regions.

Plots of PERMITS Data Showing GFAP Stain Density

GFAP stain density for AAV-Syn compared to AAV-null (control) injections; mean ± SEM, t-test, **** p<0.0001.

Astrogliosis and Microgliosis

This high magnification microscopy image shows a high level of Iba-1-positive microglia and GFAP-positive astrocytes in the ipsilateral hemisphere. Note the “activated” morphology of these neuroinflammatory cells.

Summary

The AAV A53T α-syn mouse model recapitulates many of the hallmark features of Parkinson’s disease. This model demonstrates progressive development of asymmetric motor dysfunction (due to unilateral injection), and associated loss of TH-positive SNc neurons and striatal TH expression.

AAV A53T α-synuclein locally increases brain atrophy, microglial density and activation levels, and astrocyte density and hypertrophy. Studies are planned to further interrogate the spatial relationships between microglial activation, astrocyte hypertrophy, and α-synuclein aggregation.

The AAV A53T α-synuclein mouse model is well-suited for drug development given the quantitative in-life and ex vivo readouts. It also has advantages over other models as a screening tool for novel disease-modifying therapeutics targeting α-synuclein related pathology, including the relatively short timeframe required to perform preclinical studies in this model.

Please feel free to further explore the microscopy image in the viewer.

We would be happy to discuss this model and our characterization if you would like to Contact Us.

Table of Contents
Control Panel
Section: SNc Section 1
Channels

了解更多关于我们帕金森病小鼠模型的特征、经过验证的测量方法以及临床前神经科学合同研究组织服务的信息。

常见问题解答

帕金森氏症小鼠模型中,PFF和AAV注射之间的主要区别是什么


向转基因小鼠注射PFF有哪些好处?


如何通过α-突触核蛋白动物模型测量神经变性?


在α-突触核蛋白小鼠模型中能否观察到非运动症状?


参考资料


关键词


相关内容

帕金森病最新信息以及帕金森病动物模型治疗药物评估的最佳实践。

更多信息

请告诉我们您感兴趣的内容。我们的团队将很乐意与您讨论!

请发送电子邮件至 [email protected] 或填写并提交以下表格。

姓名*
电子邮件*
电话号码*
所属单位(公司/大学)*
留言内容*

我们非常重视您的隐私。我们将按照隐私声明中的规定保护您的数据。

我同意隐私声明的条款*

我们使用必要的cookie来确保网站正常运行。我们还使用其他cookie来衡量您使用网站的情况或用于营销目的,从而帮助我们进行改进。您可以选择全部接受或全部拒绝。关于我们使用的cookie的详细信息,请参阅我们的隐私声明