Characterization of a New Amyloid-β & Tau Co-Pathology Mouse Model of Alzheimer's Disease
淀粉样蛋白β转基因模型
人类阿尔茨海默病的典型病理——β-淀粉样蛋白,可通过转基因小鼠中人类淀粉样蛋白前体蛋白(APP)和早老性痴呆症1(PS1;PSEN1)的突变体过量表达来模拟。与人类疾病类似,病理的演变会随着年龄的增长而加剧。
我们用于临床前评估实验性、疾病改良治疗剂疗效的APP/PS1模型具有高度可重复性,并复制了人类AD的多个关键特征。这些小鼠表现出淀粉样蛋白(Aβ)斑块、脑血管病变和神经炎症的渐进性发展。治疗干预的反应可以通过多种定量读数进行评估,包括对数字化脑组织切片的多重免疫荧光染色进行高级图像分析。
Tau 病的 AAV-Tau 小鼠模型
成年啮齿动物大脑中的tau病理可通过注射腺相关病毒(AAV)载体产生。在这种tau病(进行性核上性麻痹、皮质基底变性)小鼠模型中,野生型(C57BL/6)小鼠接受立体定向注射,将表达野生型人类tau的AAV载体注入黑质致密部附近。
这种健壮的tau蛋白病模型在病理学上显示了神经元体和神经突触中磷酸化tau蛋白聚集、神经炎症(包括活化的小胶质细胞和反应性星形胶质细胞)、神经变性(包括活体MRI扫描中的局部脑萎缩)和多巴胺能神经退化。在这些tau病小鼠模型中,由于单侧多巴胺能神经元缺失,导致运动功能严重受损,包括圆柱测试、悬尾摆动测试、后肢夹紧测试和旋转棒测试中的表现异常。
Tau纤维扩散模型
成年小鼠大脑中的tau病理可通过接种重组tau纤维或人脑提取物产生。在这种阿尔茨海默病小鼠模型中,P301S突变tau(PS19)转基因小鼠接受立体定向注射tau预成纤维(PFF)到大脑中,以诱导tau病理的种子和扩散。
这种健壮的tau小鼠模型在神经元的细胞体和突起中显示出高磷酸化tau聚集、神经炎症(包括活化的小胶质细胞和反应性星形胶质细胞)和神经变性。治疗功效可通过临床评估(例如体重变化 )、血液和脑脊液中神经丝轻链(NfL;NF-L)的测量以及定量免疫组织化学和多重免疫荧光分析进行评估。
阿尔茨海默氏症和Tau蛋白病模型对人类疾病的可转化性

淀粉样蛋白斑块和脑血管病变
淀粉样蛋白β聚集形成的细胞外斑块和脑血管沉积是阿尔茨海默病的神经病理学特征(Serrano-Pozo,2011)。我们的APP/PS1小鼠模型显示淀粉样蛋白病理(包括弥漫性、致密核和神经斑块、细胞内淀粉样蛋白和脑血管病理)随时间推移而增加。淀粉样蛋白病理以一种明确的时空模式发展,并可通过我们团队开发的复杂算法进行量化。

Tau 病理学
此外,淀粉样蛋白和β蛋白、Tau蛋白是阿尔茨海默病中的一种关键错误折叠蛋白。Tau蛋白被认为是AD(Lew,2021;Carbonell,2025)一些临床和神经影像学特征的主要驱动因素。我们的APP/PS1/人类Tau模型同时展示了淀粉样蛋白和β蛋白以及Tau蛋白的病理学。在细胞体和突起中观察到磷酸化tau染色。 进行性核上性麻痹、皮质基底变性、额颞痴呆等tau病在特定脑区表现出纯tau病理。 在我们的AAV-hTau模型中,我们能够将tau表达定位于黑质和中脑区域,从而有效地模拟具有帕金森特征的tau病。

活化的微胶质细胞和反应性星形胶质细胞
神经炎症细胞,包括活化的微胶质细胞和反应性星形胶质细胞,与错误折叠的淀粉样蛋白和tau蛋白紧密相邻(Minter,2015 ;Chen和Yu,2023)。在我们的APP/PS1小鼠模型中,我们证明了Aβ斑块、活化小胶质细胞和非活化小胶质细胞之间以及 Aβ斑块和肥大&非肥大星形胶质细胞之间存在空间和时间关系。在我们的APP/PS1/hTau共病模型和AAV诱导的tau病模型中,我们还观察到与磷酸化tau相关的强烈小胶质细胞和星形胶质细胞病变。
Tau病 帕金森运动特征
进行性核上性麻痹和皮质基底变性是纯粹的tau病,除其他临床表现外,其特点为帕金森氏症特征和黑质神经元严重丢失(Oyangi,2001)。在我们的AAV-hTau模型中,我们发现由于黑质多巴胺能神经元退化和相应的纹状体神经元缺失,出现了明显的运动障碍(基于圆柱测试、悬尾摆动测试、旋转棒测试和后肢夹紧测试)。
阿尔茨海默病小鼠模型特点
通过下面的互动演示,您可以了解我们对淀粉样蛋白-β和tau共病理(APP/PS1/hTau)小鼠模型的特征描述,包括体内数据和整个多重免疫荧光组织切片的高分辨率图像。
您只需使用左侧面板浏览“图像故事”即可。
您可以使用鼠标左键在高清显微镜图像中平移。您可以使用 鼠标/触控板(上/下)或左上角的+和-按钮放大和缩小 。您可以在右上角的控制面板中 切换(开/关)、更改颜色以及调整通道和分割的图像设置。
我们建议使用 全屏模式,以获得 最佳交互体验。
1/13
Alzheimer’s disease (AD) is pathologically defined by the presence of amyloid-β plaques and tau neurofibrillary tangles. While a broad range of animal models of AD exist, these models typically demonstrate amyloid-β or tau pathology, but not both. As such, there is a need for a “co-pathology” model which better recapitulates human disease and demonstrates features that can be measured using “translational biomarkers”.
Our group has developed an adeno-associated virus (AAV) vector-induced mouse model of tauopathies with Parkinsonian features (e.g. Progressive Supranuclear Palsy, Corticobasal Degeneration). We have adapted this modeling strategy by injecting AAV-hTau into a transgenic APP/PS1 mouse model to generate a co-pathology model of AD.
This Interactive Presentation illustrates some of the interesting behavioral, neuroimaging, and pathologic features of Biospective's amyloid-β/hTau co-pathology mouse model.
This model was generated by injecting 6 month-old transgenic APP/PS1 (ARTE10) mice with AAV-hTau (wild-type 2N4R human tau) or AAV-null (control) vectors bilaterally into the anterior insula and the lateral entorhinal cortex using a digital stereotaxic device with an automated microinjector.
Atlas Views of Cortical Injection Sites of AAV-Tau vectors
Multiplex immunofluorescence (mIF) images were generated by immunostaining for amyloid-β (fibrillar), phospho-tau (AT8), GFAP, Iba-1, and counterstained with the DAPI nuclear stain. Tissue sections were digitized using a high-throughput slide scanner and were processed using Biospective's PERMITSTM software platform.
To navigate though this Image Story, you can use the arrows and/or the Table of Contents icon in the upper right corner of this panel.
You can also interact with the microscopy image in the viewer on the right at any time to further explore this high-resolution data.
Overview of the APP/PS1 (ARTE10) Transgenic Mouse Model
ARTE10 [C57BL/6NTac.CBA-Tg(Thy1-PSEN1*M146V,-APP*Swe)10Arte] (APP/PS1) homozygous mice (Willuweit, 2009), generated on a C57BL/6NTac background, are a transgenic line incorporating the Swedish mutation of human amyloid precursor protein (APPsw) and the M146V mutation in human Presenilin 1 (PS1M146V). These mice express high levels of human amyloid-beta (Aβ) peptides via amyloidogenic processing of APP, and develop Alzheimer's disease-like amyloid pathology. This transgenic mouse model has been used for non-invasive imaging of amyloid-β plaques with Amyloid PET imaging tracers (Willuweit, 2021).
Representative coronal brain tissue sections showing the spatiotemporal progression of amyloid-β pathology in APP/PS1 (ARTE10) mice.
Quantitative analysis of the age-dependent increase in the density of amyloid-β plaques in the cerebral cortex of APP/PS1 (ARTE10) mice. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001
Our team at Biospective has also characterized the neuroinflammatory microenvironment around plaques in this model, as well as examined both microglia morphology and astrocyte morphology.
Examples of “neighborhoods” of amyloid-β plaques to allow for microenvironment analysis.
Amyloid-β and Phosphorylated Tau in APP/PS1/hTau Mice (Anterior Brain; Low Magnification)
This microscopy image shows amyloid-β (fibrillar) and phospho-tau staining in an entire coronal section (anterior part of the brain) of an APP/PS1/hTau mouse. For reference, an illustration with atlas labels for this approximate brain level is provided below. You can zoom-in to observe the staining at higher magnification.
Coronal Mouse Brain Section (Bregma +2.0) with Neuroanatomy Labels
Amyloid-β, pTau, and Neuroinflammation in APP/PS1/hTau Mice (Anterior Brain; High Magnification)
High magnification image showing phosphorylated tau (in neuronal soma and processes), fibrillar amyloid-β (plaques and vascular pathology), microglia, and astrocytes. Note the extensive level of neuroinflammation.
Amyloid-β and Phosphorylated Tau in APP/PS1/hTau Mice (Middle Brain; Low Magnification)
Low magnification image showing phosphorylated tau (in neuronal soma and processes) and fibrillar amyloid-β (plaques and vascular pathology. Note the extensive phosphorylated tau in the piriform cortex. For reference, an illustration with atlas labels for this approximate brain level is provided below.
Coronal Mouse Brain Section (Bregma -1.0) with Neuroanatomy Labels
Amyloid-β and Phosphorylated Tau in APP/PS1/hTau Mice (Middle Brain; High Magnification)
High magnification image showing phosphorylated tau (in neuronal soma and processes) and fibrillar amyloid-β (plaques and vascular pathology). Note the extensive level of phosphorylated tau in the piriform cortex.
pTau, Microgliosis, and Astrogliosis in APP/PS1/hTau Mice (Middle Brain; High Magnification)
High magnification image showing phosphorylated tau (in neuronal soma and processes), microglia, and astrocytes. Note the extensive level of neuroinflammation in the piriform cortex.
The plots below show the quantitative analysis of Iba-1 and GFAP stain density in brain regions with amyloid-β and tau pathology.
Iba-1 stain density for APP/PS1/hTau compared to APP/PS1 (control) mice in Anterior, Piriform, and Entorhinal Cortex regions; mean ± SEM, t-test, *** p<0.001
GFAP stain density for APP/PS1/hTau compared to APP/PS1 (control) mice in Anterior, Piriform, and Entorhinal Cortex regions; mean ± SEM, t-test, *** p<0.001, ****p<0.0001
Amyloid-β and Phosphorylated Tau in APP/PS1/hTau Mice (Posterior Brain; Low Magnification)
Low magnification image showing phosphorylated tau (in neuronal soma and processes) and fibrillar amyloid-β (plaques and vascular pathology). Note the extensive phosphorylated tau in the left entorhinal cortex (the entorhinal cortex in the right hemisphere was not injected in this brain as a control). For reference, an illustration with atlas labels for this approximate brain level is provided below.
Coronal Mouse Brain Section (Bregma -3.2) with Neuroanatomy Labels
Amyloid-β and Phosphorylated Tau in APP/PS1/hTau Mice (Posterior Brain; High Magnification)
High magnification image showing phosphorylated tau (in neuronal soma and processes) and fibrillar amyloid-β (plaques and vascular pathology) in the entorhinal cortex.
Sleep Alterations in APP/PS1/hTau Mice
Sleep is altered in Alzheimer’s disease and has been associated with tau-driven neuropathology. Increased daytime sleep has been observed in later stages of the disease.
We have performed an assessment of sleep-wake cycles in the APP/PS1/hTau model using the non-invasive PiezoSleep system. The plot below shows the increased level of sleep in the dark phase in APP/PS1/hTau mice compared to APP/PS1 mice (corresponding to daytime sleep in humans).
Percentage of sleep in the light and dark phases measured by the PiezoSleep system.
Brain Atrophy in the APP/PS1/hTau Model
We have acquired in vivo anatomical MRI data from wild-type (WT), WT/hTau, APP/PS1, and APP/PS1/hTau mice at 4 weeks following injection of AAV-hTau or AAV-null (control) vectors. We generated regional volumes and cortical thickness measures using our fully-automated NIGHTWINGTM image processing platform. The figures below show MRI atlases and quantitative measures in several brain regions.
Anatomical MRI with segmented regions, and plots of regional volumes assessed in wild-type (hashed), and APP/PS1 (solid), AAV-null and hTau mice. **p<0.01,***p<0.001, ****p<0.0001
Mouse brain surface rendering with segmented entorhinal cortex, as well as a plot of the regional thickness assessed in wild-type (hashed), and APP/PS1 (solid), AAV-null and hTau mice. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001
Note that APP/PS1 mice do not show any brain atrophy compared to WT mice. The injection of AAV-hTau induced highly significant reductions of regional volumes and cortical thickness. Interestingly, the APP/PS1/hTau mice appear to have greater brain atrophy compared the the WT/hTau mice, suggesting a potential modulatory role of amyloid-β.
Translation of Mouse MRI Brain Atrophy Data to Human Alzheimer's Disease
Our team at Biospective has performed a rigorous analysis of the relationship between amyloid-β, tau, and cortical thickness in human Alzheimer’s disease. This analysis was performed using Amyloid PET, Tau PET, and 3D Anatomical MRI data from the ADNI study. We have found that tau, rather than amyloid-β, is primarily responsible for cortical thinning, as well as regional cerebral glucose metabolism, which can be appreciated in the figure below.
t-Statistic maps (thresholded for statistical significance) demonstrating the effect of tau and amyloid-β on both cortical thickness and cerebral glucose metabolism.
We have further demonstrated that the correlation between tau and cortical thickness is increased as the amyloid-β burden increases, which is apparent in the video below.
Statistical maps showing increased regional correlation between tau and cortical thickness as a function of amyloid-β load.
This human neuroimaging data corresponds well with our mouse MRI data showing that tau is the primary driver of brain atrophy with an apparent increase in the presence of amyloid-β.
Summary
This novel amyloid-β/tau co-pathology mouse model recapitulates several features of Alzheimer’s disease. In terms of the neuropathology, we have observed parenchymal (including diffuse, dense-core, and neuritic plaques) and vascular Aβ aggregates, phosphorylated tau in cell bodies and processes (including dystrophic neurites), microgliosis, and astrogliosis. We plan to further explore the relationships between the misfolded proteins and neuroinflammation in this model.
One of the most interesting observations is the neurodegenerative phenotype in the APP/PS1/hTau mice. The regional brain atrophy observed via structural analysis of the anatomical MRI scans can provide a robust way to evaluate the effects of potential interventions and serve as a translational biomarker given the widespread use of neuroimaging in AD clinical trials.
Based on the quantifiable in-life and post-mortem measures that we have reported, APP/PS1/hTau mice can serve as a useful model for preclinical evaluation of novel disease-modifying therapeutics for Alzheimer’s disease.
Please feel free to further explore the microscopy image in the viewer.
We would be happy to discuss this model and our characterization if you would like to Contact Us.
了解更多关于我们阿尔茨海默氏病和Tau蛋白病小鼠模型的特征、我们经过验证的测量方法以及我们的临床前神经科学合同研究组织(CRO)服务。
APP/PS1转基因小鼠模型的主要病理特征是什么?
在这些转基因小鼠中,我们发现β -淀粉样蛋白(Aβ)斑块 沉积从出生后3个月左右开始,随着时间的推移,沉积量和程度不断增加。我们看到了纤维状细胞外和细胞内β-淀粉样蛋白病理,以及实质和血管Aβ沉积。该模型的一个关键特征是神经炎症程度严重,星形胶质细胞和微胶质细胞(包括活化的微胶质细胞)均出现病变。您可以在我们的演示文稿《淀粉样蛋白和神经炎症细胞在阿尔茨海默病APP/PS1小鼠模型中的时空关系》中了解淀粉样蛋白斑块和神经炎症细胞之间的时空关系。
多重免疫荧光是评估阿尔茨海默氏症小鼠模型治疗效果的主要方法。斑块负荷、磷酸化tau密度、活化小胶质细胞密度、反应性星形胶质细胞密度和神经元损失等定量测量值,包括错误折叠的蛋白质病理(如淀粉样蛋白斑块)与神经炎症细胞之间的空间关系,都可以通过计算机视觉和机器学习算法从数字化组织切片中获得。
是否随时可以获得适合年龄的APP/PS1小鼠用于研究?
是的。在给药期开始时,我们通常使用3至6个月大的APP/PS1转基因小鼠。这些小鼠通常可用于快速启动研究。
使用APP/PS1小鼠进行研究的典型持续时间是多少?
这些淀粉样蛋白和β转基因小鼠模型显示了一种与年龄相关的病理进展。根据治疗干预的作用机制和特定靶标以及特定的读数,我们通常进行3-6个月的给药。
阿尔茨海默氏症模型中是否存在活化的小胶质细胞?
是的。我们的淀粉样蛋白和β蛋白以及Tau蛋白模型显示强烈的神经炎症(星形胶质细胞增生和小胶质细胞增生)。这些小鼠还显示小胶质细胞形态的变化,这与人类阿尔茨海默氏病中发现的变化一致。您可以在我们的资源中阅读更多关于神经退行性疾病中小胶质细胞形态的信息——ALS、阿尔茨海默氏病和帕金森病中的小胶质细胞形态。
参考资料
Beauquis, J., Pavía, P., Pomilio, C., Vinuesa, A., Podlutskaya, N., Galvan, V., Saravia, F. Environmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer’s disease. Exp. Neurol., 239: 28–37, 2013; doi:10.1016/j.expneurol.2012.09.009
Carbonell, F., McNicoll, C., Zijdenbos,A.P., Bedell, B.J. Alzheimer's Disease Neuroimaging Initiative. Tau-related reduction of glucose metabolism in mild cognitive impairment occurs independently of APOE ε4 genotype and is influenced by Aβ. Alzheimers Dement., 21:e14625, 2025; doi: 10.1002/alz.14625
Chandra, S., Di Meco, A., Dodiya, H.B., Popovic, J., Cuddy, L.K., Weigle, I.Q., Zhang, X., Sadleir, K., Sisodia, S.S., Vassar, R. The gut microbiome regulates astrocyte reaction to Aβ amyloidosis through microglial dependent and independent mechanisms. Mol. Neurodegener., 18: 45, 2023; doi:10.1186/s13024-023-00635-2
Chen, Y., Yu, Y. Tau and neuroinflammation in Alzheimer’s disease: interplay mechanisms and clinical translation. J. Neuroinflammation., 20:165, 2023; doi: 10.1186/s12974-023-02853-3
Escartin, C., Galea, E., Lakatos, A., O’Callaghan, J.P., Petzold, G.C., Serrano-Pozo, A., Steinhäuser, C., Volterra, A., Carmignoto, G., Agarwal, A., Allen, N.J., Araque, A., Barbeito, L., Barzilai, A., Bergles, D.E., Bonvento, G., Butt, A.M., Chen, W.T., … Verkhratsky, A. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci., 24: 312–325, 2021; doi:10.1038/s41593-020-00783-4
Lew, C.H., Petersen, C., Neylan, T.C., Grinberg, L.T. Tau-driven degeneration of sleep- and wake-regulating neurons in Alzheimer's disease. Sleep Med. Rev., 60:101541, 2021; doi: 10.1016/j.smrv.2021.101541
Minter, M.R., Taylor, J.M., Crack, P.J. The contribution of neuroinflammation to amyloid toxicity in Alzheimer's disease. J. Neurochem., 136:457-74, 2016; doi: 10.1111/jnc.13411
Oyanagi, K., Tsuchiya, K., Yamazaki, M., Ikeda, K. Substantia nigra in progressive supranuclear palsy, corticobasal degeneration, and parkinsonism-dementia complex of Guam: specific pathological features. J. Neuropathol. Exp. Neurol., 60:393-402, 2001; doi: 10.1093/jnen/60.4.393
Paolicelli, R. C., Sierra, A., Stevens, B., Tremblay, M. E., Aguzzi, A., Ajami, B., Amit, I., Audinat, E., Bechmann, I., Bennett, M., Bennett, F., Bessis, A., Biber, K., Bilbo, S., Blurton-Jones, M., Boddeke, E., Brites, D., Brône, B., … Wyss-Coray, T. Microglia states and nomenclature: a field at its crossroads. Neuron, 110: 3458–3483, 2022; doi: 10.1016/j.neuron.2022.10.020
Serrano-Pozo, A., Frosch, M.P., Masliah, E., Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med., 1:a006189, 2011; doi: 10.1101/cshperspect.a006189
关键词
腺相关病毒(AAV): 一种感染人类和其他灵长类动物(如小鼠和大鼠)细胞的小型 病毒。它们属于依赖性小病毒属和 微小病毒科。它们是复制缺陷型非包膜病毒,具有约4.8kb的单链DNA线性基因组。腺相关病毒具有一些关键特征,使其成为构建体细胞转基因和基因治疗载体的理想选择 。
阿尔茨海默氏病:一种进行性神经退行性疾病,表现为认知能力下降、记忆力减退和行为改变。它与大脑中淀粉样蛋白斑块和tau缠结的积累以及大脑皮层和皮层下区域神经元和突触的丢失有关。
淀粉样蛋白(Aβ):一种 由淀粉样前体蛋白(APP)衍生的肽,可聚集形成斑块。
星形胶质细胞形态计量学: 星形胶质细胞形态的定量 测量, 例如细胞面积、细胞体面积比例、区域大小、突起分支点数量、骨架等。
星形胶质细胞增生: 星形胶质细胞是一种胶质细胞,在脑损伤或疾病时会出现增生 和肥大,常见于神经退行性疾病。
脑萎缩: 整个大脑或大脑区域体积或厚度减少 。
脑脊液(CSF):一种 存在于脑室和蛛网膜下腔中的血浆超滤液 。
Microglia:大脑和脊髓中的一种神经胶质细胞。Microglia细胞约占大脑细胞总数的10-15%,是中枢神经系统的主要免疫细胞。这些细胞对于维持体内平衡、清除细胞碎片以及提供大脑内的关键支持功能至关重要。
Microglia Morphometrics: 微胶质细胞形态的定量 测量, 如细胞面积、细胞体周长、突起骨架的分支点数量等。
神经退化:导致神经元丢失的复杂、多因素过程。
神经丝轻链(NfL;NF-L): 神经丝的四个亚基之一, 是神经元中提供结构和形状的蛋白质;血液和脑脊液中的神经丝轻链水平可作为神经轴突损伤的标志物。
斑块相关星形胶质细胞(PAA): 位于淀粉样蛋白β斑块附近的星形胶质细胞 。根据研究的不同,与斑块的确切距离可能有所不同,有些研究认为距离小于50μm(Beauquis,2013), 而另一些研究则认为与斑块直接接触(Chandra,2023 )。
预成纤维(PFF):重组的单体蛋白(如α-突触核蛋白) 在特定条件下培养,产生聚集的、错误折叠的纤维。
反应性星形胶质细胞: 星形胶质细胞采用多种可能的分子状态之一作为对中枢神经系统病理状况的反应的统称, 属于“反应性星形胶质细胞增生”的一部分。由埃斯卡廷等人( Escartin,2021) 在一份共识声明中定义。
反应性小胶质细胞: 对特定情况作出反应或反应的小胶质细胞 。该名称由Paolicelli等人(Paolicelli,2022) 提出,以取代不受欢迎的术语“活化”小胶质细胞,强调小胶质细胞在健康和疾病状态下可能具有许多不同的“反应状态”。
Tau:一种 在维持大脑神经元稳定性和功能方面发挥关键作用的蛋白质。它主要存在于神经元中,可稳定微管,而微管是细胞骨架的一部分。微管对于维持细胞形状、实现细胞内运输和促进细胞分裂至关重要。在各种神经退行性疾病中,tau的超磷酸化现象非常明显,异常磷酸化分子会导致tau从微管上脱离。这些分离的tau蛋白会聚集形成不溶性纤维,即神经纤维缠结。受tau聚集影响的疾病称为tau病,包括阿尔茨海默氏症、进行性核上性麻痹(PSP)、额颞叶痴呆(FTD)和皮质基底变性(CBD)。
相关内容
关于阿尔茨海默氏病和阿尔茨海默氏病动物模型治疗剂评估最佳实践的最新信息。
ALS、阿尔茨海默氏症和帕金森氏症中的微胶质形态
概述微胶质形态学分析及其在神经退行性疾病研究和药物研发中的应用。
阿尔茨海默氏症中的淀粉样蛋白斑块分析
人类和阿尔茨海默病动物模型(转基因小鼠和大鼠)脑组织切片中的Aβ斑块分类和量化方法概述。