Akundi, R.S., Huang, Z., Eason, J., Pandya, J.D., Zhi, L., Cass, W.A., Sullivan, P.G., Büeler, H. Increased mitochondrial calcium sensitivity and abnormal expression of innate immunity genes precede dopaminergic defects in Pink1-deficient mice. PLoS ONE, 6: e16038, 2011; doi: 10.1371/journal.pone.0016038
Apostolova, N., Victor, V.M. Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxid. Redox Signal., 22: 686-729, 2015; doi: 10.1089/ars.2014.5952
Andersen, J.K. Oxidative stress in neurodegeneration: cause or consequence? Nat. Med., 10: S18-S25, 2004; doi: 10.1038/nrn1434
Ashrafi, G., Schwarz, T.L. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ., 20: 31–42, 2013; doi: 10.1038/cdd.2012.81
Bauer, T.M., Murphy, E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ. Res., 126: 280–293, 2020; doi: 10.1161/CIRCRESAHA.119.316306
Beal, M.F. Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci., 23: 298–304, 2000; doi: 10.1016/S0166-2236(00)01584-8
Bharath, L.P., Agrawal, M., McCambridge, G., Nicholas, D.A., Hasturk, H., Liu, J., Jiang, K., Liu, R., Guo, Z., Deeney, J., Apovian, C. M., Snyder-Cappione, J., Hawk, G.S., Fleeman, R. M., Pihl, R.M.F., Thompson, K., Belkina, A.C., Cui, L., Proctor, E.A., Nikolajczyk, B.S. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab., 32: 44-55.e6, 2020; doi: 10.1016/j.cmet.2020.04.015
Bhatti, J.S., Bhatti, G.K., Reddy, P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria-based therapeutic strategies. Biochim. Biophys. Acta (BBA) - Mol. Basis Dis., 1863: 1066–1077, 2017; doi: 10.1016/j.bbadis.2016.11.010
Casanova, A., Wevers, A., Navarro-Ledesma, S., Pruimboom, L. Mitochondria: It is all about energy. Front. Physiol., 14: 1114231, 2023; doi: 10.3389/fphys.2023.1114231
Chen, W., Zhao, H., Li, Y. Mitochondrial dynamics in health and disease: Mechanisms and potential targets. Signal Transduct. Target. Ther., 8: 1–25, 2023; doi: 10.1038/s41392-023-01547-9
Collier, J. J., Oláhová, M., McWilliams, T.G., Taylor, R.W. Mitochondrial signalling and homeostasis: From cell biology to neurological disease. Trends Neurosci., 46: 137–152, 2023; doi: 10.1016/j.tins.2022.12.001
Dash, U.C., Bhol, N.K., Swain, S.K., Samal, R.R., Nayak, P.K., Raina, V., Panda, S.K., Kerry, R.G., Duttaroy, A.K., Jena, A.B. Oxidative stress and inflammation in the pathogenesis of neurological disorders: mechanisms and implications. Acta Pharm. Sin. B, 14: e-pub ahead of print, 2024; doi: 10.1016/j.apsb.2024.10.004
de Castro, I.P., Martins, L.M., Loh, S.H.Y. Mitochondrial quality control and Parkinson’s disease: A pathway unfolds. Mol. Neurobiol., 43: 80–86, 2011; doi: 10.1007/s12035-010-8150-4
Di Maio, R., Barrett, P.J., Hoffman, E.K., Barrett, C.W., Zharikov, A., Borah, A., Hu, X., McCoy, J., Chu, C.T., Burton, E.A., Hastings, T.G., Greenamyre, J.T. α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci. Transl. Med., 8: 342ra78-342ra78, 2016; doi: 10.1126/scitranslmed.aaf3634
Duarte, A.I., Sadowska-Bartosz, I., Karkucinska-Wieckowska, A., Lebiedzinska-Arciszewska, M., Palmeira, C.M., Rolo, A.P., Kabiri, Y., Zavan, B., Pinton, P., Borges, F., Zischka, H., Jones, J.G., Bartosz, G., Oliveira, P.J., Wieckowski, M.R.A metabolic and mitochondrial angle on aging. In: Oliveira, P.J., Malva, J.O. (Eds.), Aging (pp. 175-256). Academic Press, 2023; doi: 10.1016/B978-0-12-823761-8.00024-0
Duarte, F.V., Ciampi, D., Duarte, C.B. Mitochondria as central hubs in synaptic modulation. Cell. Mol. Life Sci., 80: 173, 2023; doi: 10.1007/s00018-023-04814-8
Eo, H., Yu, S.-H., Choi, Y., Kim, Y., Kang, Y.C., Lee, H., Kim, J.H., Han, K., Lee, H.K., Chang, M.-Y., Oh, M.S., Kim, C.-H. Mitochondrial transplantation exhibits neuroprotective effects and improves behavioral deficits in an animal model of Parkinson’s disease. Neurotherapeutics, 21: 4, 2024; doi: 10.1016/j.neurot.2024.e00355
Geibl, F.F., Henrich, M.T., Xie, Z., Zampese, E., Ueda, J., Tkatch, T., Wokosin, D.L., Nasiri, E., Grotmann, C.A., Dawson, V.L., Dawson, T.M., Chandel, N.S., Oertel, W.H., Surmeier, D.J. α-Synuclein pathology disrupts mitochondrial function in dopaminergic and cholinergic neurons at-risk in Parkinson’s disease. Mol. Neurodegener., 19: 69, 2024; doi: 10.1186/s13024-024-00756-2
Ghosh, A., Langley, M.R., Harischandra, D.S., Neal, M.L., Jin, H., Anantharam, V., Joseph, J., Brenza, T., Narasimhan, B., Kanthasamy, A., Kalyanaraman, B., Kanthasamy, A.G. Mitoapocynin treatment protects against neuroinflammation and dopaminergic neurodegeneration in a preclinical animal model of Parkinson’s disease. J. Neuroimmune Pharmacol., 11: 259-278, 2016; doi: 10.1007/s11481-016-9650-4
Henrich, M.T., Oertel, W.H., Surmeier, D.J., Geibl, F.F. Mitochondrial dysfunction in Parkinson’s disease – A key disease hallmark with therapeutic potential. Mol. Neurodegener., 18: 83, 2023; doi: 10.1186/s13024-023-00676-7
Jin, H., Kanthasamy, A., Ghosh, A., Anantharam, V., Kalyanaraman, B., Kanthasamy, A.G. Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochim. Biophys. Acta Mol. Basis Dis., 1842: 1282-1294, 2014; doi: 10.1016/j.bbadis.2013.09.007
Johri, A., Beal, M.F. Mitochondrial dysfunction in neurodegenerative diseases. J. Pharmacol. Exp. Ther., 342: 619–630, 2012; doi: 10.1124/jpet.112.192138
Kshirsagar, S., Sawant, N., Morton, H., Reddy, A.P., Reddy, P.H. Mitophagy enhancers against phosphorylated tau-induced mitochondrial and synaptic toxicities in Alzheimer disease. Pharmacol. Res., 174: 105973, 2021; doi: 10.1016/j.phrs.2021.105973
Ludtmann, M.H.R., Angelova, P.R., Horrocks, M.H., Choi, M.L., Rodrigues, M., Baev, A.Y., Berezhnov, A.V., Yao, Z., Little, D., Banushi, B., Al-Menhali, A.S., Ranasinghe, R.T., Whiten, D.R., Yapom, R., Dolt, K.S., Devine, M.J., Gissen, P., Kunath, T., Jaganjac, M., … Gandhi, S. α-Synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat. Commun., 9: 2293, 2018; doi: 10.1038/s41467-018-04422-2
Miller, S., Muqit, M.M.K. Therapeutic approaches to enhance PINK1/Parkin mediated mitophagy for the treatment of Parkinson’s disease. Neurosci. Lett., 705: 7-13, 2019; doi: 10.1016/j.neulet.2019.04.029
Nguyen, T. T., Wei, S., Nguyen, T.H., Jo, Y., Zhang, Y., Park, W., Gariani, K., Oh, C.-M., Kim, H.H., Ha, K.-T., Park, K.S., Park, R., Lee, I.-K., Shong, M., Houtkooper, R.H., Ryu, D. Mitochondria-associated programmed cell death as a therapeutic target for age-related disease. Exp. Mol. Med., 55: 1595–1619, 2023; doi: 10.1038/s12276-023-01046-5
Norat, P., Soldozy, S., Sokolowski, J.D., Gorick, C.M., Kumar, J. S., Chae, Y., Yağmurlu, K., Prada, F., Walker, M., Levitt, M.R., Price, R.J., Tvrdik, P., Kalani, M.Y.S. Mitochondrial dysfunction in neurological disorders: Exploring mitochondrial transplantation. NPJ Regen. Med., 5: 1–9, 2020; doi: 10.1038/s41536-020-00107-x
Palacino, J.J., Sagi, D., Goldberg, M.S., Krauss, S., Motz, C., Wacker, M., Klose, J., Shen, J. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem., 279: 18614–18622, 2004; doi: 10.1074/jbc.M401135200
Parihar, M.S., Parihar, A., Fujita, M., Hashimoto, M., Ghafourifar, P. Mitochondrial association of alpha-synuclein causes oxidative stress. Cell. Mol. Life Sci., 65: 1272–1284, 2008; doi: 10.1007/s00018-008-7589-1
Paß, T., Wiesner, R.J., Pla-Martín, D. Selective neuron vulnerability in common and rare diseases—Mitochondria in the focus. Front. Mol. Biosci., 8: 676187, 2021; doi: 10.3389/fmolb.2021.676187
Prasuhn, J., Davis, R.L., Kumar, K.R. Targeting mitochondrial impairment in Parkinson’s disease: challenges and opportunities. Front. Cell Dev. Biol., 8: 615461, 2021; doi: 10.3389/fcell.2020.615461
Quinn, P.M.J., Moreira, P.I., Ambrósio, A.F., Alves, C.H. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathol. Commun., 8: 189, 2020; doi: 10.1186/s40478-020-01062-w
Roger, A.J., Muñoz-Gómez, S.A., Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol., 27: R1177–R1192, 2017; doi: 10.1016/j.cub.2017.09.015
Samanta, S., Akhter, F., Roy, A., Chen, D., Turner, B., Wang, Y., Clemente, N., Wang, C., Swerdlow, R. H., Battaile, K.P., Lovell, S., Yan, S.F., Yan, S.S. New cyclophilin D inhibitor rescues mitochondrial and cognitive function in Alzheimer’s disease. Brain, 147: 1710–1725, 2024; doi: 10.1093/brain/awad432
Sarkar, S., Davies, J. E., Huang, Z., Tunnacliffe, A., Rubinsztein, D.C. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J. Biol. Chem., 282: 5641-5652, 2007; doi: 10.1074/jbc.M609532200
Sheng, Z.-H. The interplay of axonal energy homeostasis and mitochondrial trafficking and anchoring. Trends Cell Biol., 27: 403–416, 2017; doi: 10.1016/j.tcb.2017.01.005
Shiota, T., Traven, A., Lithgow, T. Mitochondrial biogenesis: Cell-cycle-dependent investment in making mitochondria. Curr. Biol., 25: R78–R80, 2015; doi: 10.1016/j.cub.2014.12.006
Smith, R.A.J., Porteous, C. M., Coulter, C.V., Murphy, M.P. Selective targeting of an antioxidant to mitochondria. Eur. J. Biochem., 263: 709-716, 1999; doi: 10.1046/j.1432-1327.1999.00543.x
Szeto, H.H. Mitochondria-targeted peptide antioxidants: novel neuroprotective agents. AAPS J., 8: 62, 2006; doi: 10.1208/aapsj080362
Tang, F.-L., Liu, W., Hu, J.-X., Erion, J.R., Ye, J., Mei, L., Xiong, W.-C. VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function. Cell Rep., 12: 1631–1643, 2015; doi: 10.1016/j.celrep.2015.08.001
Toomey, C.E., Heywood, W.E., Evans, J.R., Lachica, J., Pressey, S.N., Foti, S.C., Al Shahrani, M., D’Sa, K., Hargreaves, I.P., Heales, S., Orford, M., Troakes, C., Attems, J., Gelpi, E., Palkovits, M., Lashley, T., Gentleman, S.M., Revesz, T., Mills, K., Gandhi, S. Mitochondrial dysfunction is a key pathological driver of early-stage Parkinson’s. Acta Neuropathol. Commun., 10: 134, 2022; doi: 10.1186/s40478-022-01424-6
Uoselis, L., Nguyen, T.N., Lazarou, M. Mitochondrial degradation: Mitophagy and beyond. Mol. Cell., 83: 3404–3420, 2023; doi: 10.1016/j.molcel.2023.08.021
Walters, G.C., Usachev, Y.M. Mitochondrial calcium cycling in neuronal function and neurodegeneration. Front. Cell Dev. Biol., 11: 1094356, 2023; doi: 10.3389/fcell.2023.1094356
Wang, Q., Xue, H., Yue, Y., Hao, S., Huang, S.-H., Zhang, Z. Role of mitophagy in the neurodegenerative diseases and its pharmacological advances: a review. Front. Mol. Neurosci., 15: e-pub ahead of print, 2022; doi: 10.3389/fnmol.2022.1014251